0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Нейтронные звезды: что известно человечеству об этом явлении

Нейтронные звезды: что известно человечеству об этом явлении

С момента зарождения Вселенной прошло уже более десятка миллиарда лет, в течение которых происходит звездная эволюция, осуществляется изменение состава космического пространства. Одни космические объекты исчезают, а на их месте появляются другие. Этот процесс происходит постоянно, однако из-за огромных временных промежутков, мы в состоянии наблюдать только один единственный кадр колоссальной и увлекательной мультисессии.

Мы видим Вселенную во всей красе, наблюдая жизнь звезд, этапы эволюции и момент предсмертной агонии. Смерть звезды – это всегда грандиозное и яркое событие. Чем крупнее и массивнее звезда, тем масштабнее катаклизм.

Нейтронная звезда является ярким примером такой эволюции, живым памятником былого звездного могущества. В этом и заключается весь парадокс. На месте массивной звезды, размеры и масса которой в десятки и сотни раз превышают аналогичные параметры нашего Солнца, возникает крошечное небесное тело диаметром в пару десятков километров. Такое превращение не происходит в один момент. Образование нейтронных звезд — результат длинного эволюционного пути развития космического монстра, растянутого в пространстве и во времени.

Образование нейтронной звезды

Физика нейтронных звезд

Подобные объекты немногочисленны во Вселенной, как может показаться на первый взгляд. Как правило, нейтронная звезда может быть одна на тысячу звезд. Секрет такого небольшого числа заключается в уникальности эволюционных процессов, которые предшествуют рождению нейтронных звезд. Все звезды по-разному проживают свою жизнь. По-разному выглядит и финал звездной драмы. Масштабы действа определяются массой звезды. Чем больше масса космического тела, чем массивнее звезда, тем выше вероятность того что ее смерть будет быстрой и яркой.

Постоянно увеличившиеся силы гравитации приводят к трансформации звездного вещества в тепловую энергию. Этот процесс невольно сопровождается колоссальным выбросом – взрывом Сверхновой. Результатом такого катаклизма становится новый космический объект – нейтронная звезда.

Проще говоря, звездная материя перестает быть топливом, термоядерные реакции утрачивают свою интенсивность и не в состоянии поддерживать в недрах массивного тела необходимые температуры. Выходом из создавшегося состояния становится коллапс — обрушение звездного газа на центральную часть звезды.

Все это приводит к мгновенному высвобождению энергии, разбрасывающей внешние слои звездной материи во все стороны. На месте звезды возникает расширяющаяся туманность. Такая трансформация может произойти с любой звездой, однако при этом результаты коллапса могут быть разными.

Если масса космического объекта невелика, к примеру, мы имеем дело с желтым карликом вроде Солнца, на месте вспышки остается белый карлик. В том случае, если масса космического монстра превышает солнечную массу в десятки раз, в результате обрушения мы наблюдаем вспышку Сверхновой. На месте былого звездного величия образуется нейтронная звезда. Сверхмассивные звезды, масса которых в сотни раз больше массы Солнца, завершают свой жизненный цикл, нейтронная звезда является промежуточным этапом. Продолжающееся гравитационное сжатие приводит к тому, что жизнь нейтронной звезды завершается появлением черной дыры.

В результате коллапса от звезды остается только ядро, продолжающееся сжиматься. В связи с этим, характерной особенностью нейтронных звезд являются высокая плотность и огромная масса при мизерных размерах. Так масса нейтронной звезды диаметром 20 км. в 1,5-3 раза больше массы нашей звезды. Происходит уплотнение или нейтронизация электронов и протонов в нейтроны. Соответственно, при уменьшении объема и размеров, стремительно увеличивается плотность и масса звездного вещества.

Состав нейтронных звезд

Точная информация о составе нейтронных звезд отсутствует. На сегодняшний день ученые-астрофизики при изучении подобных объектов пользуются рабочей моделью, предложенной физиками – ядерщиками.

Строение нейтронной звезды

Предположительно, звездное вещество в результате коллапса трансформируется в нейтронную, сверхтекучую жидкость. Этому способствует огромное гравитационное притяжение, оказывающее постоянное давление на вещество. Такая «ядерная жидкая субстанция» называется вырожденный газ и в 1000 раз плотнее воды. Атомы вырожденного газа состоят из ядра и электронов, вращающихся вокруг него. При нейтронизации внутреннее пространство атомов под воздействием сил гравитации исчезает. Электроны сливаются с ядром, образуя нейтроны. Устойчивость сверхплотной субстанции придает внутренняя гравитация. В противном случае неизбежно началась бы цепная реакция, сопровождающаяся ядерным взрывом.

Чем ближе к внешнему краю звезды, тем меньше температура и давление. В результате сложных процессов происходит «остывание» нейтронной субстанции, из которой интенсивно выделяются ядра железа. Коллапс и последующий взрыв является фабрикой планетарного железа, которое распространяется в космическом пространстве, становясь строительным материалом при формировании планет.

Парадоксы рождения нейтронных звезд

Первая версия о том, что нейтронные звезды — продукты взрыва Сверхновой, сегодня не является постулатом. Существует теория, что здесь может быть использован и другой механизм. В двойных звездных системах пищей для новых звезд становятся белые карлики. Звездное вещество постепенно перетекает из одного космического объекта на другой, увеличивая его массу до состояния критической. Другими словами, в будущем один из пары белый карлик – это нейтронная звезда.

Нередко одиночная нейтронная звезда, пребывая в тесном окружении звездных скоплений, обращает свое внимание на ближайшую соседку. Компаньонами нейтронных звезд могут стать любые звезды. Эти пары возникают довольно часто. Последствия такой дружбы зависят от массы компаньона. Если масса нового компаньона невелика, то украденное звездное вещество будет скапливаться вокруг в виде аккреционного диска. Этот процесс, сопровождаемый большим периодом вращения, приведет к тому, что звездный газ разогреется до температуры в миллион градусов. Нейтронная звезда вспыхнет потоком рентгеновского излучения, становясь рентгеновским пульсаром. У этого процесса есть два пути:

    звезда остается в космосе тусклым небесным телом;тело начинает излучать короткие рентгеновские вспышки (барстеры).

Во время рентгеновских вспышек яркость звезды стремительно увеличивается, делая такой объект в 100 тысяч раз ярче Солнца.

История изучения нейтронных звезд

Нейтронный звезды стали открытием второй половины XX века. Ранее обнаружить подобные объекты в нашей галактике и во Вселенной было технически невозможно. Тусклый свет и малые размеры таких небесных тел не позволяли их обнаружить с помощью оптических телескопов. Несмотря на отсутствие визуального контакта, существование подобных объектов в космосе предсказывали теоретически. Первая версия о существовании звезд с огромной плотностью появилась с подачи советского ученого Л. Ландау в 1932 году.

Фриц Цвикки и Вальтер Бааде

Через год, в 1933 году уже за океаном было сделано серьезное заявление о существовании звезд с необычным строением. Астрономы Фриц Цвикки и Вальтер Бааде выдвинули обоснованную теорию, что на месте вспышки Сверхновой обязательно остается нейтронная звезда.

В 60-е годы XX столетия обозначился прорыв в астрономических наблюдениях. Этому способствовало появление рентгеновских телескопов, способных выявлять в космосе источники мягкого рентгеновского излучения. Используя в наблюдениях теорию о существовании в космосе источников сильного теплового излучения, астрономы пришли к выводу, что мы имеем дело с новым типом звезд. Весомым дополнением теории о существовании нейтронных звезд стало открытие в 1967 году пульсаров. Американец Джоселин Белл с помощью своей радиоаппаратуры обнаружил поступающие из космоса радиосигналы. Источником радиоволн являлся стремительно вращающийся объект, который действовал подобно радиомаяку, посылая сигналы во все стороны.

Ближайшая нейтронная звезда

Такой объект непременно имеет большую скорость вращения, что для обычной звезды стало бы фатальным. Первым пульсаром, который был открыт астрономами, является PSR В1919+21, находящийся на расстоянии 2283,12 св. года от нашей планеты. По мнению ученых, ближайшей нейтронной звездой к Земле является космический объект RX J1856.5-3754, расположенный в созвездии Южная Корона, который был открыт в 1992 году в обсерватории Чандра. Расстояние от Земли до ближайшей нейтронной звезды составляет 400 световых лет.

Нейтронные звезды: что известно человечеству об этом явлении

С момента зарождения Вселенной прошло уже более десятка миллиарда лет, в течение которых происходит звездная эволюция, осуществляется изменение состава космического пространства. Одни космические объекты исчезают, а на их месте появляются другие. Этот процесс происходит постоянно, однако из-за огромных временных промежутков, мы в состоянии наблюдать только один единственный кадр колоссальной и увлекательной мультисессии.

Читать еще:  Складной нож: современное исполнение

Мы видим Вселенную во всей красе, наблюдая жизнь звезд, этапы эволюции и момент предсмертной агонии. Смерть звезды – это всегда грандиозное и яркое событие. Чем крупнее и массивнее звезда, тем масштабнее катаклизм.

Нейтронная звезда является ярким примером такой эволюции, живым памятником былого звездного могущества. В этом и заключается весь парадокс. На месте массивной звезды, размеры и масса которой в десятки и сотни раз превышают аналогичные параметры нашего Солнца, возникает крошечное небесное тело диаметром в пару десятков километров. Такое превращение не происходит в один момент. Образование нейтронных звезд — результат длинного эволюционного пути развития космического монстра, растянутого в пространстве и во времени.

Физика нейтронных звезд

Подобные объекты немногочисленны во Вселенной, как может показаться на первый взгляд. Как правило, нейтронная звезда может быть одна на тысячу звезд. Секрет такого небольшого числа заключается в уникальности эволюционных процессов, которые предшествуют рождению нейтронных звезд. Все звезды по-разному проживают свою жизнь. По-разному выглядит и финал звездной драмы. Масштабы действа определяются массой звезды. Чем больше масса космического тела, чем массивнее звезда, тем выше вероятность того что ее смерть будет быстрой и яркой.

Постоянно увеличившиеся силы гравитации приводят к трансформации звездного вещества в тепловую энергию. Этот процесс невольно сопровождается колоссальным выбросом – взрывом Сверхновой. Результатом такого катаклизма становится новый космический объект – нейтронная звезда.

Проще говоря, звездная материя перестает быть топливом, термоядерные реакции утрачивают свою интенсивность и не в состоянии поддерживать в недрах массивного тела необходимые температуры. Выходом из создавшегося состояния становится коллапс — обрушение звездного газа на центральную часть звезды.

Все это приводит к мгновенному высвобождению энергии, разбрасывающей внешние слои звездной материи во все стороны. На месте звезды возникает расширяющаяся туманность. Такая трансформация может произойти с любой звездой, однако при этом результаты коллапса могут быть разными.

Если масса космического объекта невелика, к примеру, мы имеем дело с желтым карликом вроде Солнца, на месте вспышки остается белый карлик. В том случае, если масса космического монстра превышает солнечную массу в десятки раз, в результате обрушения мы наблюдаем вспышку Сверхновой. На месте былого звездного величия образуется нейтронная звезда. Сверхмассивные звезды, масса которых в сотни раз больше массы Солнца, завершают свой жизненный цикл, нейтронная звезда является промежуточным этапом. Продолжающееся гравитационное сжатие приводит к тому, что жизнь нейтронной звезды завершается появлением черной дыры.

В результате коллапса от звезды остается только ядро, продолжающееся сжиматься. В связи с этим, характерной особенностью нейтронных звезд являются высокая плотность и огромная масса при мизерных размерах. Так масса нейтронной звезды диаметром 20 км. в 1,5-3 раза больше массы нашей звезды. Происходит уплотнение или нейтронизация электронов и протонов в нейтроны. Соответственно, при уменьшении объема и размеров, стремительно увеличивается плотность и масса звездного вещества.

Состав нейтронных звезд

Точная информация о составе нейтронных звезд отсутствует. На сегодняшний день ученые-астрофизики при изучении подобных объектов пользуются рабочей моделью, предложенной физиками – ядерщиками.

Предположительно, звездное вещество в результате коллапса трансформируется в нейтронную, сверхтекучую жидкость. Этому способствует огромное гравитационное притяжение, оказывающее постоянное давление на вещество. Такая «ядерная жидкая субстанция» называется вырожденный газ и в 1000 раз плотнее воды. Атомы вырожденного газа состоят из ядра и электронов, вращающихся вокруг него. При нейтронизации внутреннее пространство атомов под воздействием сил гравитации исчезает. Электроны сливаются с ядром, образуя нейтроны. Устойчивость сверхплотной субстанции придает внутренняя гравитация. В противном случае неизбежно началась бы цепная реакция, сопровождающаяся ядерным взрывом.

Чем ближе к внешнему краю звезды, тем меньше температура и давление. В результате сложных процессов происходит «остывание» нейтронной субстанции, из которой интенсивно выделяются ядра железа. Коллапс и последующий взрыв является фабрикой планетарного железа, которое распространяется в космическом пространстве, становясь строительным материалом при формировании планет.

Именно вспышкам сверхновых Земля обязана тем, что в ее строении и структуре присутствуют частицы космического железа.

Условно рассматривая строение нейтронной звезды в микроскоп, можно выделить в строении объекта пять слоёв:

  • атмосфера объекта;
  • внешняя кора;
  • внутренние слои;
  • внешнее ядро;
  • внутреннее ядро нейтронной звезды.

Атмосфера нейтронной звезды имеет толщину всего несколько сантиметров и является самым тонким слоем. По своему составу – это слой плазмы, отвечающий за тепловое облучение звезды. Далее идет внешняя кора, которая имеет толщину в несколько сот метров. Между внешней корой и внутренними слоями — царство вырожденного электронного газа. Чем глубже к центру звезды, тем быстрее этот газ становится релятивистским. Другими словами, внутри звезды происходящие процессы связаны с уменьшением доли атомных ядер. При этом количество свободных нейтронов увеличивается. Внутренние области нейтронной звезды представляют собой внешнее ядро, где нейтроны продолжают соседствовать с электронами и протонами. Толщина этого слоя субстанции составляет несколько километров, при этом плотность материи в десятки раз выше, чем плотность атомного ядра.

Весь этот атомарный супчик существует благодаря колоссальным температурам. В момент вспышки Сверхновой, температура нейтронной звезды составляет 1011К. В этот период новый небесный объект обладает максимальной светимостью. Сразу после взрыва наступает этап стремительного остывания, температура за несколько минут падает до отметки 109К. Впоследствии процесс остывания замедляется. Несмотря на то, что температура звезды все еще велика, светимость объекта снижается. Звезда продолжает светиться только за счет теплового и инфракрасного излучения.

Классификация нейтронных звезд

Такой специфический состав звездно-ядерной субстанции обуславливает высокую ядерную плотность нейтронной звезды 1014-1015 г/см³, при этом средний размер образовавшегося объекта составляет не менее 10 и не более 20 км. Дальнейшее увеличение плотности стабилизируется силами взаимодействия нейтронов. Другими словами, вырожденный звездный газ находится в состоянии равновесия, удерживая звезду от очередного коллапса.

Довольно сложная природа таких космических объектов, какими являются нейтронные звезды, стала причиной последующей классификации, которая объясняет их поведение и существование на просторах Вселенной. Основными параметрами, на основании которых осуществляется классификация, являются период вращения звезды и масштабы магнитного поля. В процессе своего существования нейтронная звезда утрачивает энергию вращения, уменьшается и магнитное поле объекта. Соответственно, небесное тело переходит из одного состояния в другое, среди которых наиболее характерными выделяются следующие типы:

  • Радиопульсары (эжекторы) представляют собой объекты, которые имеют малый период вращения, однако сила магнитного поля у них остается достаточно большой. Заряженные частицы, совершая движение вдоль силовых полей, в местах обрыва покидают оболочку звезды. Небесное тело данного типа эжектирует, периодически наполняя Вселенную радиоимпульсами, фиксируемыми в радиочастотном диапазоне;
  • Нейтронная звезда – пропеллер. В данном случае у объекта крайне малая скорость вращения, однако, магнитное поле не обладает достаточной силой, чтобы притягивать из окружающего пространства элементы материи. Звезда не излучает импульсов, не происходит в данном случае и аккреция (падение космической материи);
  • Рентгеновский пульсар (аккретор). Такие объекты имеют малую скорость вращения, но ввиду сильного магнитного поля звезда интенсивно поглощает материал из космического пространства. В результате в местах падения звездной материи на поверхности нейтронной звезды скапливается плазма, разогретая до миллионов градусов. Эти точки на поверхности небесного тела становятся источниками пульсирующего теплового, рентгеновского излучения. С появлением мощных радиотелескопов, способных заглянуть в глубину космоса в инфракрасном и рентгеновском диапазоне, стало возможным быстрее выявлять довольно много обычных рентгеновских пульсаров;
  • Георотатор – объект, который имеет малую скорость вращения, при этом на поверхности звезды в результате аккреции происходит скапливание звездной материи. Сильное магнитное поле препятствует образованию в поверхностном слое плазмы, и звезда постепенно набирает свою массу.

Как видно из существующей классификации, каждая из нейтронных звезд ведет себя по-разному. Отсюда вытекают и различные способы их обнаружения, и возможно, различна будет судьба этих небесных тел в будущем.

Парадоксы рождения нейтронных звезд

Первая версия о том, что нейтронные звезды — продукты взрыва Сверхновой, сегодня не является постулатом. Существует теория, что здесь может быть использован и другой механизм. В двойных звездных системах пищей для новых звезд становятся белые карлики. Звездное вещество постепенно перетекает из одного космического объекта на другой, увеличивая его массу до состояния критической. Другими словами, в будущем один из пары белый карлик – это нейтронная звезда.

Читать еще:  Вопросы квалификационного экзамена для частных охранников 5 разряда:Огневая подготовка

Нередко одиночная нейтронная звезда, пребывая в тесном окружении звездных скоплений, обращает свое внимание на ближайшую соседку. Компаньонами нейтронных звезд могут стать любые звезды. Эти пары возникают довольно часто. Последствия такой дружбы зависят от массы компаньона. Если масса нового компаньона невелика, то украденное звездное вещество будет скапливаться вокруг в виде аккреционного диска. Этот процесс, сопровождаемый большим периодом вращения, приведет к тому, что звездный газ разогреется до температуры в миллион градусов. Нейтронная звезда вспыхнет потоком рентгеновского излучения, становясь рентгеновским пульсаром. У этого процесса есть два пути:

  • звезда остается в космосе тусклым небесным телом;
  • тело начинает излучать короткие рентгеновские вспышки (барстеры).

Во время рентгеновских вспышек яркость звезды стремительно увеличивается, делая такой объект в 100 тысяч раз ярче Солнца.

История изучения нейтронных звезд

Нейтронный звезды стали открытием второй половины XX века. Ранее обнаружить подобные объекты в нашей галактике и во Вселенной было технически невозможно. Тусклый свет и малые размеры таких небесных тел не позволяли их обнаружить с помощью оптических телескопов. Несмотря на отсутствие визуального контакта, существование подобных объектов в космосе предсказывали теоретически. Первая версия о существовании звезд с огромной плотностью появилась с подачи советского ученого Л. Ландау в 1932 году.

Через год, в 1933 году уже за океаном было сделано серьезное заявление о существовании звезд с необычным строением. Астрономы Фриц Цвикки и Вальтер Бааде выдвинули обоснованную теорию, что на месте вспышки Сверхновой обязательно остается нейтронная звезда.

В 60-е годы XX столетия обозначился прорыв в астрономических наблюдениях. Этому способствовало появление рентгеновских телескопов, способных выявлять в космосе источники мягкого рентгеновского излучения. Используя в наблюдениях теорию о существовании в космосе источников сильного теплового излучения, астрономы пришли к выводу, что мы имеем дело с новым типом звезд. Весомым дополнением теории о существовании нейтронных звезд стало открытие в 1967 году пульсаров. Американец Джоселин Белл с помощью своей радиоаппаратуры обнаружил поступающие из космоса радиосигналы. Источником радиоволн являлся стремительно вращающийся объект, который действовал подобно радиомаяку, посылая сигналы во все стороны.

Такой объект непременно имеет большую скорость вращения, что для обычной звезды стало бы фатальным. Первым пульсаром, который был открыт астрономами, является PSR В1919+21, находящийся на расстоянии 2283,12 св. года от нашей планеты. По мнению ученых, ближайшей нейтронной звездой к Земле является космический объект RX J1856.5-3754, расположенный в созвездии Южная Корона, который был открыт в 1992 году в обсерватории Чандра. Расстояние от Земли до ближайшей нейтронной звезды составляет 400 световых лет.

Обнаружена уникальная нейтронная звезда

Нынешний год богат на открытия необычных космических объектов. Так, недавно мы писали о том, что астрономы обнаружили планету, которая не должна существовать. Теперь же, с помощью радиотелескопа Green Bank Telescope, ученые нашли самую массивную нейтронную звезду за всю историю наблюдений. Нейтронные звезды довольно странные — они практически полностью состоят из нейтронов и обладают невероятной плотностью. Масса обнаруженной звезды, которой дали не самое красивое название J0740+6620 в целых 2,17 раз превосходит массу Солнца, а ее диаметр равняется 30 километрам. Исследование будет опубликовано в журнале Nature Astronomy.

Считается, что нейтронные звезды коллапсируют в черные дыры

Что такое нейтронные звезды?

Согласитесь, Вселенная — странная штука. В ней есть галактические нити, сверхскопления галактик, темная материя, пузыри Ферми, черные дыры, нейтронные звезды… список можно продолжать долго. И если о космической паутине мы рассказывали вам совсем недавно, то сегодня предлагаем обратить внимание на нейтронные звезды.

Начнем с того, что более плотными объектами во Вселенной кроме нейтронных звезд являются только черные дыры. Исследователи справедливо считают, что изучение нейтронных звезд способно приблизить их к пониманию экстремальной физики Вселенной — в конце-концов именно эти звезды коллапсируют в космических монстров. По сути нейтронная звезда — это массивное атомное ядро, которое обладает весьма странными свойствами. Так, J0740+6620 является самой плотной и самой странной нейтронной звездой за всю историю наблюдений.

Нейтронные звезды — одни из самых загадочных объектов во Вселенной

Поскольку звезды, как и мы с вами, стареют и умирают, их конечное состояние зависит от массы. Чтобы понять, как нейтронные звезды образуются из умирающих звезд, сперва нужно понять, как образуются белые карлики. Дело в том, что 97% звезд во Вселенной — это белые карлики. Они состоят из электронно-ядерной плазмы и лишены источников термоядерной энергии. При этом, они являются следующим самым плотным видом звезд после нейтронных из-за своего рода “встроенного” космического знака остановки. Проще говоря, белые карлики настолько плотные, что атомные связи их материала разорваны. Это превращает их в плазму атомных ядер и электронов. При этом, обрести большую плотность чем у белых карликов довольно сложно — электроны не хотят находиться в одном и том же состоянии друг с другом и будут сопротивляться сжатию до определенной точки, где это может произойти. Физики называют это вырождением электронов.

Обсудить удивительные открытия астрономов можно с участниками нашего Telegram-чата.

Звезды, чья масса не превышает 10 солнечных масс, имеют тенденцию становиться белыми карликами. Предел массы белых карликов составляет около 1,44 солнечных масс. А вот более плотная звезда массой от 10 до 29 солнечных масс может стать нейтронной звездой. Дело в том, что в этот момент плотность звезды настолько велика, что преодолевает вырождение электронов: электроны по-прежнему не хотят занимать одно и то же состояние, поэтому вынуждены объединяться с протонами, в результате чего образуются нейтроны и испускаются нейтрино. Таким образом, нейтронные звезды почти полностью состоят из нейтронов и удерживаются благодаря их вырождению, которое схоже с вырождением электронов у белых карликов.

Схематическое изображение пульсара J074+6620. Сфера в середине представляет нейтронную звезду, кривые показывают линии магнитного поля, а выступающие конусы — зоны излучения.

При этом, соавтор исследования Скотт Рэнсом отмечает, что у нейтронных звезд существует переломный момент, когда их внутренняя плотность становится настолько экстремальной, что сила тяжести подавляет способность нейтронов противостоять дальнейшему коллапсу. Таким образом, если бы масса J074+6620 была больше, то звезда просто коллапсировала бы в черную дыру. Каждая «самая массивная» нейтронная звезда, которую обнаруживают ученые, постепенно приближает специалистов к определению того самого переломного момента, который удерживает нейтронную звезду от коллапса.

Хотите быть в курсе последних научных открытий? Подписывайтесь на наш новостной канал в Telegram.

Как астрономы ищут нейтронные звезды?

В Млечном Пути насчитывается не менее 100 миллионов нейтронных звезд, однако большинство из них — древние, холодные звезды, поэтому их очень трудно обнаружить. К счастью, J0740+6620 — это пульсар. Напомним, что пульсарами называют тип быстро вращающейся нейтронной звезды, которая излучает радиоволны и другое электромагнитное излучение. Когда пульсар вращается, эти лучи «пульсируют» с завидной регулярностью, что несколько напоминает ход часов. Большинство нейтронных звезд трудно идентифицировать, но когда радиоволны пульсара проникают через Землю, их становится намного легче обнаружить и изучить.

Столкновение двух нейтронных звезд

Пульсар J0740+6620 обитает в бинарной системе по соседству с белым карликом. Когда белый карлик проходил перед пучком радиоволн нейтронной звезды, астрономы на нашей планете смогли обнаружить небольшую задержку в поступающих радиоволнах. Это произошло потому, что гравитация белого карлика искривляла пространство вокруг него, заставляя проходящие радиоволны перемещаться на одно касание дальше, чем обычно. Измерив это, астрономы смогли рассчитать массу белого карлика. А зная массу одного объекта в бинарной системе, можно легко рассчитать массу другого. Таким образом, исследователи обнаружили, что J0740+6620 является самой массивной нейтронной звездой на сегодняшний день.

Авторы исследования надеются, что их работа поможет ученым в таких областях науки как физика высоких энергий, релятивистская астрофизика и др. А все потому, что помимо свойств нейтронных звезд, перечисленных в статье, при слиянии этих объектов образуются самые тяжелые элементы во Вселенной.

Думаю, ни для кого сегодня не секрет, что наша планета – с самого момента ее рождения, около 4,5 миллиардов лет назад – постоянно подвергается самым настоящим бомбардировкам… метеоритами. Безусловно, сегодня ситуация в корне отличается от той, что была миллиарды лет назад, но метеориты по-прежнему падают на нашу планету. Так, ежедневно на Землю попадает около 100 […]

Читать еще:  Бронированная разведывательно-дозорная машина брдм-2

Несмотря на то, что Луна находится к Земле ближе, чем какой-либо другой исследуемый объект во Вселенной, ученые до сих пор не пришли к единому мнению о том, как именно появился спутник нашей планеты. После того, как в 1972 году в рамках программы «Аполлон» астронавтам удалось взять пробы грунта на Луне, появилась новая теория формирования этого […]

Каждый день Земля делает один оборот вокруг своей оси, вот почему на нашей планете существуют восходы и закаты. Наш каменистый космический дом вертится с тех самых пор, как сформировался 4,6 миллиардов лет назад и будет продолжать вращаться до конца времен, которые, вероятно, наступят после того как Солнце превратится в красного гиганта и поглотит ближайшие планеты. […]

Нейтронные звезды: что известно человечеству об этом явлении

С момента зарождения Вселенной прошло уже более десятка миллиарда лет, в течение которых происходит звездная эволюция, осуществляется изменение состава космического пространства. Одни космические объекты исчезают, а на их месте появляются другие. Этот процесс происходит постоянно, однако из-за огромных временных промежутков, мы в состоянии наблюдать только один единственный кадр колоссальной и увлекательной мультисессии.

Мы видим Вселенную во всей красе, наблюдая жизнь звезд, этапы эволюции и момент предсмертной агонии. Смерть звезды – это всегда грандиозное и яркое событие. Чем крупнее и массивнее звезда, тем масштабнее катаклизм.

Нейтронная звезда является ярким примером такой эволюции, живым памятником былого звездного могущества. В этом и заключается весь парадокс. На месте массивной звезды, размеры и масса которой в десятки и сотни раз превышают аналогичные параметры нашего Солнца, возникает крошечное небесное тело диаметром в пару десятков километров. Такое превращение не происходит в один момент. Образование нейтронных звезд — результат длинного эволюционного пути развития космического монстра, растянутого в пространстве и во времени.

Образование нейтронной звезды

Физика нейтронных звезд

Подобные объекты немногочисленны во Вселенной, как может показаться на первый взгляд. Как правило, нейтронная звезда может быть одна на тысячу звезд. Секрет такого небольшого числа заключается в уникальности эволюционных процессов, которые предшествуют рождению нейтронных звезд. Все звезды по-разному проживают свою жизнь. По-разному выглядит и финал звездной драмы. Масштабы действа определяются массой звезды. Чем больше масса космического тела, чем массивнее звезда, тем выше вероятность того что ее смерть будет быстрой и яркой.

Постоянно увеличившиеся силы гравитации приводят к трансформации звездного вещества в тепловую энергию. Этот процесс невольно сопровождается колоссальным выбросом – взрывом Сверхновой. Результатом такого катаклизма становится новый космический объект – нейтронная звезда.

Проще говоря, звездная материя перестает быть топливом, термоядерные реакции утрачивают свою интенсивность и не в состоянии поддерживать в недрах массивного тела необходимые температуры. Выходом из создавшегося состояния становится коллапс — обрушение звездного газа на центральную часть звезды.

Все это приводит к мгновенному высвобождению энергии, разбрасывающей внешние слои звездной материи во все стороны. На месте звезды возникает расширяющаяся туманность. Такая трансформация может произойти с любой звездой, однако при этом результаты коллапса могут быть разными.

Если масса космического объекта невелика, к примеру, мы имеем дело с желтым карликом вроде Солнца, на месте вспышки остается белый карлик. В том случае, если масса космического монстра превышает солнечную массу в десятки раз, в результате обрушения мы наблюдаем вспышку Сверхновой. На месте былого звездного величия образуется нейтронная звезда. Сверхмассивные звезды, масса которых в сотни раз больше массы Солнца, завершают свой жизненный цикл, нейтронная звезда является промежуточным этапом. Продолжающееся гравитационное сжатие приводит к тому, что жизнь нейтронной звезды завершается появлением черной дыры.

В результате коллапса от звезды остается только ядро, продолжающееся сжиматься. В связи с этим, характерной особенностью нейтронных звезд являются высокая плотность и огромная масса при мизерных размерах. Так масса нейтронной звезды диаметром 20 км. в 1,5-3 раза больше массы нашей звезды. Происходит уплотнение или нейтронизация электронов и протонов в нейтроны. Соответственно, при уменьшении объема и размеров, стремительно увеличивается плотность и масса звездного вещества.

Состав нейтронных звезд

Точная информация о составе нейтронных звезд отсутствует. На сегодняшний день ученые-астрофизики при изучении подобных объектов пользуются рабочей моделью, предложенной физиками – ядерщиками.

Строение нейтронной звезды

Предположительно, звездное вещество в результате коллапса трансформируется в нейтронную, сверхтекучую жидкость. Этому способствует огромное гравитационное притяжение, оказывающее постоянное давление на вещество. Такая «ядерная жидкая субстанция» называется вырожденный газ и в 1000 раз плотнее воды. Атомы вырожденного газа состоят из ядра и электронов, вращающихся вокруг него. При нейтронизации внутреннее пространство атомов под воздействием сил гравитации исчезает. Электроны сливаются с ядром, образуя нейтроны. Устойчивость сверхплотной субстанции придает внутренняя гравитация. В противном случае неизбежно началась бы цепная реакция, сопровождающаяся ядерным взрывом.

Чем ближе к внешнему краю звезды, тем меньше температура и давление. В результате сложных процессов происходит «остывание» нейтронной субстанции, из которой интенсивно выделяются ядра железа. Коллапс и последующий взрыв является фабрикой планетарного железа, которое распространяется в космическом пространстве, становясь строительным материалом при формировании планет.

Парадоксы рождения нейтронных звезд

Первая версия о том, что нейтронные звезды — продукты взрыва Сверхновой, сегодня не является постулатом. Существует теория, что здесь может быть использован и другой механизм. В двойных звездных системах пищей для новых звезд становятся белые карлики. Звездное вещество постепенно перетекает из одного космического объекта на другой, увеличивая его массу до состояния критической. Другими словами, в будущем один из пары белый карлик – это нейтронная звезда.

Нередко одиночная нейтронная звезда, пребывая в тесном окружении звездных скоплений, обращает свое внимание на ближайшую соседку. Компаньонами нейтронных звезд могут стать любые звезды. Эти пары возникают довольно часто. Последствия такой дружбы зависят от массы компаньона. Если масса нового компаньона невелика, то украденное звездное вещество будет скапливаться вокруг в виде аккреционного диска. Этот процесс, сопровождаемый большим периодом вращения, приведет к тому, что звездный газ разогреется до температуры в миллион градусов. Нейтронная звезда вспыхнет потоком рентгеновского излучения, становясь рентгеновским пульсаром. У этого процесса есть два пути:

    звезда остается в космосе тусклым небесным телом;тело начинает излучать короткие рентгеновские вспышки (барстеры).

Во время рентгеновских вспышек яркость звезды стремительно увеличивается, делая такой объект в 100 тысяч раз ярче Солнца.

История изучения нейтронных звезд

Нейтронный звезды стали открытием второй половины XX века. Ранее обнаружить подобные объекты в нашей галактике и во Вселенной было технически невозможно. Тусклый свет и малые размеры таких небесных тел не позволяли их обнаружить с помощью оптических телескопов. Несмотря на отсутствие визуального контакта, существование подобных объектов в космосе предсказывали теоретически. Первая версия о существовании звезд с огромной плотностью появилась с подачи советского ученого Л. Ландау в 1932 году.

Фриц Цвикки и Вальтер Бааде

Через год, в 1933 году уже за океаном было сделано серьезное заявление о существовании звезд с необычным строением. Астрономы Фриц Цвикки и Вальтер Бааде выдвинули обоснованную теорию, что на месте вспышки Сверхновой обязательно остается нейтронная звезда.

В 60-е годы XX столетия обозначился прорыв в астрономических наблюдениях. Этому способствовало появление рентгеновских телескопов, способных выявлять в космосе источники мягкого рентгеновского излучения. Используя в наблюдениях теорию о существовании в космосе источников сильного теплового излучения, астрономы пришли к выводу, что мы имеем дело с новым типом звезд. Весомым дополнением теории о существовании нейтронных звезд стало открытие в 1967 году пульсаров. Американец Джоселин Белл с помощью своей радиоаппаратуры обнаружил поступающие из космоса радиосигналы. Источником радиоволн являлся стремительно вращающийся объект, который действовал подобно радиомаяку, посылая сигналы во все стороны.

Ближайшая нейтронная звезда

Такой объект непременно имеет большую скорость вращения, что для обычной звезды стало бы фатальным. Первым пульсаром, который был открыт астрономами, является PSR В1919+21, находящийся на расстоянии 2283,12 св. года от нашей планеты. По мнению ученых, ближайшей нейтронной звездой к Земле является космический объект RX J1856.5-3754, расположенный в созвездии Южная Корона, который был открыт в 1992 году в обсерватории Чандра. Расстояние от Земли до ближайшей нейтронной звезды составляет 400 световых лет.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector