0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Гравитация — сила, создавшая вселенную

Содержание

20 интересных фактов о гравитации – самой загадочной силе Вселенной

Гравитация – фундаментальная сила, которая воздействует на физические объекты вблизи Земли. Как много вы знаете о ней? Людям потребовалось не одно тысячелетие, чтобы понять, как работает сила тяготения (закон Ньютона), что она собой представляет, реально ли ее контролировать? И по сей день наши знания скромны, хотя и позволяют бороздить космические пространства. Готовы узнать больше об одном из самых загадочных явлений?

20 удивительных фактов о гравитации

1. С латинского «гравитация» переводится как «тяжесть».

Это одна из 4-х основополагающих сил в физике, помимо электромагнитной, сильной и слабой ядерной. А еще она самая малозначимая в этой цепочке.

2. Именно сила тяжести контролирует максимальную высоту гор на Земле.

Последние не могут подняться выше 15 км, так как рискуют разрушиться под собственной массой. Кстати, вес человека и других объектов тоже определяет гравитация.

3. Сила тяжести Марса составляет всего 38% от земной силы тяжести, значит, 80-килограммовый человек на Красной планете будет весить каких-то 30 кг.

Разве это не отличный повод для колонизации?

4. Какой бы массы не были объекты (10 или 100 кг), они будут падать на Землю с одинаковой скоростью, поскольку гравитация связана не с весом, а с формой тела.

5. Если вы думаете, что на Луне гравитация слишком слабая, поэтому предметы падают медленнее, чем на Земле, – вы ошибаетесь, все наоборот!

Причина кроется в отсутствии атмосферы – из формулы исключается сопротивление воздуха.

6. Возвращаясь на Землю, многие космонавты не только учатся заново ходить, они напрочь забывают о гравитации!

Поэтому в первые недели акклиматизации спокойно отпускают предметы на весу, забывая, что те могут разбиться.

7. В теории человеческая раса не способна освоить планеты, сила тяжести которых превосходит земную более чем в три раза.

Наши организм не выдержит такого давления, все его функции будут нарушены, что приведет к мучительной смерти.

8. Жизнь без гравитации опасна: в условиях невесомости тело человека стремительно теряет кальций, что делает его кости ломкими и слабыми.

Вот почему космонавтам на МКС приходится соблюдать строгую диету и постоянно тренироваться.

9. В космосе тело человека растет, причина тому – выпрямление позвоночника из-за отсутствия гравитации.

Кстати, именно поэтому марсиане должны быть выше землян – там нет давления силы тяжести. С другой стороны, чем выраженнее гравитация, тем физически сильнее обитатели планеты.

10. Многие земные бактерии в космосе становятся гораздо агрессивнее.

Почему? Чем меньше сила тяжести, тем быстрее прогрессирует болезнь, поэтому астронавты должны быть исключительно здоровыми людьми.

11. При отсутствии гравитации пауки плетут паутину, по форме напоминающую шар.

12. Пламя свечи в невесомости тоже имеет форму сферы, при этом огонь выдает не желтое, а синее свечение.

13. Во Вселенной существуют участки, где сила тяготения искажена, ученые называют их «гравитационными линзами космоса».

Подобная аномалия помогает подробнее изучать самые отдаленные уголки Галактики, многократно увеличивая зону видимости.

14. По предположению астрофизиков, в центре Млечного Пути находится огромная черная дыра, масса которой превосходит массу солнца в сотни миллионов раз.

Эта самая дыра создает сильнейшую гравитацию в Галактике, которую обязательно нужно учитывать при космических расчетах.

15. Гравитация черных дыр настолько мощная, что поглощает все живое, даже свет.

16. Каждый объект во Вселенной – кометы, звезды, планеты — имеет свою силу гравитации, которая обязательно взаимодействует с другими объектами.

Вот почему даже в невесомости сила тяжести всегда присутствует, хотя ее значениями можно пренебречь.

17. На нашей планете сила тяжести распределяется неравномерно из-за того, что Земля постоянно вращается, имеет неоднородную поверхность и разную высоту материков.

А так как полюса Земли сплюснуты, сила гравитации в этих зонах тоже ощутимее, чем на экваторе.

18. Самый низкий показатель гравитации на Земле находится в районе Гудзонова залива.

Подобная аномалия объясняется таянием ледников, которые деформируют земную кору и сдвигают ее массу.

19. Еще один забавный факт: из-за силы тяжести наш мочевой пузырь чувствует куда большее давление на стенки, чем если бы мы летали в невесомости.

Вот почему мы хотим в туалет даже тогда, когда он заполнен всего на треть. Для примера – в космосе астронавты не испытывают нужды, пока их мочевой не переполнится до краев.

20. Кстати, в связи с низкой гравитацией на МКС запрещено пить газированные напитки.

Невесомость меняет принцип распределения газов в желудке, отчего стакан колы может спровоцировать мокрую отрыжку и даже рвоту, и все это месиво будет возвращаться обратно в пищевод. Согласитесь, таких экспериментов никому не пожелаешь.

КАКОВА РОЛЬ ГРАВИТАЦИИ ВО ВСЕЛЕННОЙ

Автор Илья ГУЛЬКАРОВ, доктор физ.-мат. наук, профессор

Хорошо известно, что нашей Вселенной управляет закон, согласно которому все тела природы притягиваются друг к другу. Английский учёный И. Ньютон ещё в 1687 г., анализируя движение Луны вокруг Земли, нашёл простую формулу, которая позволяет рассчитать силу притяжения между двумя телами. Эта сила прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними. Этот закон называется универсальным законом гравитации. Гравитация действует на расстоянии, через пространство и является господствующей силой внутри Вселенной. Ничто во Вселенной не может избежать гравитации. Гравитация не позволяет Вселенной развалиться на части.

Если вы хотите найти силу притяжения вашего тела Землёй, вы должны найти произведение масс Земли и вашего тела и разделить результат на квадрат расстояния между вами и центром Земли, которое равно около R=6400 км. Умножив полученный результат на так называемую гравитационную постоянную (эта постоянная была измерена спустя 110 лет после опубликования Ньютоном закона гравитации), вы найдёте силу тяжести, которая является вашим весом. Таким образом, причина, почему вы обладаете весом, связана с гравитационным притяжением Земли. Вы можете найти также ваш вес, если умножите массу вашего тела на ускорение свободного падения, которое в случае нашей планеты равно около 10 м в секунду за секунду. Ваш вес на Луне будет в 6 раз меньше вашего веса на Земле, потому что масса и размер Луны отличаются от земных. На Юпитере вы станете почти в 3 раза тяжелее, чем на Земле. Ваш вес на любой планете зависит от размера планеты и её массы. Причина, почему ваше притяжение, например к Солнцу, чрезвычайно мало, связана с гигантским расстоянием между вами и Солнцем. Если вы будете удаляться от Земли, ваш вес будет уменьшаться. На расстоянии равном радиусу Земли от её поверхности (т.е. на расстоянии r = 2R до центра Земли), ваш вес, т.е. сила притяжения, уменьшится в 4 раза, на расстоянии 2R, т.е. r = 3R, ваш вес уменьшится в 9 раз и т.д. Чтобы полностью «потерять свой вес», вам нужно удалиться на очень большое расстояние от Земли, теоретически в бесконечность. Никакого пространства за пределами Вселенной нет.

Закон гравитации является самым важным, фундаментальным законом природы, величайшим обобщением, достигнутым человеческим разумом. Этот закон (вместе с законами Кеплера) позволяет определить многие характеристики небесных тел — массы планет, звёзд, галактик и даже чёрных дыр.

Закон гравитации позволяет с большой точностью рассчитать орбиты планет и создать математическую модель Вселенной. С помощью закона гравитации можно также рассчитать космические скорости (an escape velocity). Например, чтобы покинуть Землю, т.е. освободиться от притяжения Земли, вам нужна скорость 11.2 км/сек, Солнце — 618 км/сек, чёрную дыру — 300,000 км/сек. В отсутствие сил гравитации наша Вселенная была бы просто невозможна, т.е. она не могла бы даже возникнуть. Видимо, гравитация является свойством пространства-времени или одной из форм материи. Именно гравитация ответственна за многие процессы во Вселенной – её рождение, существование порядка вместо хаоса. Этот порядок привёл к образованию из высвободившейся энергии элементарных частиц, звёзд, галактик и системе живых структур. Этот закон объясняет, почему, например, Луна вращается вокруг Земли, а Земля вокруг Солнца, Солнце вращается вокруг центра Галактики. Сама Галактика в свою очередь движется по отношению к другим галактикам, а Вселенная расширяется (разбегание галактик) и это расширение длится почти 14 миллиардов лет с момента рождения Вселенной, Big Bang. Упорядоченное движение всех тел в природе связано с силами гравитации.

Читать еще:  Нейтронная бомба: история и принцип работы

Энергия Вселенной, связанная с её массой, положительна и может быть рассчитана с помощью известной зависимости между массой и энергией (формула Эйнштейна, Е = Мc^2, где с – скорость света, а М масса Вселенной). Любопытно, что положительная энергия взрыва в точности равна отрицательной энергии гравитационного взаимодействия всех тел внутри нашей Вселенной. Другими словами, полная энергия нашей Вселенной равна нулю. Это означает, что наша Вселенная возникла из ничего и представляет собой «бесплатный ланч». Вы можете легко рассчитать гравитационную энергию, воспользовавшись формулой для гравитационной потенциальной энергии, которая отрицательна (энергия притяжения). Например, энергия гравитационного притяжения между вами и Землёй равна около — 4 миллиардов джоулей, если ваша масса равна 60 кг. Такая энергия понадобится, чтобы удалить вас с поверхности Земли в бесконечность. Ваша энергия притяжения к Юпитеру будет в 400 раз меньше земного, вследствие огромного расстояния между вами и Юпитером. На поверхности же Юпитера эта энергия будет в 28 раз больше земной. Т.о. наше пространство – это огромное вместилище отрицательной энергии, которая связана с притяжением тел.

Согласно современным физическим теориям (например, М – теория или теория суперструн) наша Вселенная не единственная и очень многие миры, как и наша Вселенная, были созданы из ничего. Такие вселенные — пузыри могут возникать и исчезать за пределами нашей Вселенной (multiverses), но они недоступны для нашего обозрения. Это связано с невозможностью существования скоростей, больших скорости света. Создание этих миров не требует вмешательства извне, и их возникновение является лишь следствием физических законов.

Существование этих законов и фундаментальных постоянных связано с внутренней структурой и геометрией Вселенной. В других вселенных эти законы и постоянные (например, скорость света) будут другими. Живые системы, если они там существуют, также могут отличаться от земных и будут нам недоступны. Законы природы запустили процесс, приведший, в конечном счете, к возникновению Вселенной. Согласно Фридману, при определённых условиях Вселенная со всеми её галактиками и звёздами может развиться из точки. В момент Big Bang размер нашей будущей Вселенной был меньше размера элементарной частицы, а плотность практически бесконечной.

Естественно возникает вопрос, а почему сила притяжения присутствует во Вселенной, когда и как она появилась, имеются ли также силы отталкивания, антигравитация и т.д. Согласно общей теории относительности Эйнштейна (ОТО), пространство и время связаны между собой и не могут существовать отдельно, образуя четырёхмерное пространство. Они возникли спонтанно в момент образования Вселенной. До Big Bang не было ни пространства, ни времени и они исчезнут в тот момент, когда исчезнет наша Вселенная. То же относится и к гравитации, т.е. силы гравитации, которые являются проявлением свойств пространства и времени, возникли в момент Big Bang. Если вы приближаетесь к массивному телу, то пространство и время искажены вблизи этого тела вследствие гравитации. Это искажение тем больше, чем больше масса тела. Вблизи чёрной дыры пространство и время искажены настолько, что внутри чёрной дыры время исчезает и там вместо четырёхмерного пространства-времени имеется только трёхмерное пространство. Находясь внутри чёрной дыры, вы бы никогда не состарились и это единственный способ прожить бесконечно долго. Другой способ остановить время – это двигаться со скоростью света. Нашу Вселенную в момент взрыва можно себе представить как весьма плотную чёрную мини дыру, в которой время отсутствовало. Такие чёрные мини дыры – это остатки после взрыва массивных звёзд. Время возникло сразу же после взрыва, т.е. до Big Bang время просто отсутствовало и «творец» не мог создать Вселенную, находясь вне времени. Наличие сил гравитации и связанной с этими силами энергии взаимодействия тел объясняет, откуда взялась гигантская энергия, которая в последующем step by step стала причиной образования галактик, звёзд, планет, частиц, жизни и т.д. Напомню, что во Вселенной имеется 100 миллиардов галактик и каждая из них содержит порядка 100 миллиардов звёзд. Умножив эти два числа, вы найдёте полное число звёзд во Вселенной. Чтобы вообразить число звёзд во Вселенной, обычно это число сравнивают с числом песчинок на всех пляжах Земли. Если предположить, что масса звезды равна массе Солнца, то можно легко найти массу Вселенной, а следовательно, и её полную энергию, используя связь массы и энергии. Как уже упоминалось, эта энергия положительна и в точности равна отрицательной энергии гравитационного взаимодействия всех тел внутри Вселенной. В момент Big Bang ингредиентами Вселенной были только материя (или масса и связанная с ней энергия) и пространство. Всё остальное появилось потом. Например, жизнь на Земле возникла около 4 миллиардов лет назад, т.е. примерно через 10 миллиардов лет после Big Bang.

Другой интересный вопрос связан с разбеганием галактик. Почему они удаляются друг от друга, несмотря на притяжение, т.е. почему они разбегаются, а не коллапсируют. Это связано с наличием во Вселенной наряду с веществом (4%) так называемой тёмной материи (22%) и загадочной тёмной энергии (74%). Последняя связана с силами отталкивания. Эти силы не только препятствуют коллапсу нашей Вселенной (Big Crunch), но и объясняют разбегание галактик и даже ускорение нашей Вселенной, т.к. количество тёмной энергии превышает количество обычного вещества и тёмной материи. Астрофизики, изучающие Вселенную, нашли много доказательств наличия в ней тёмной материи, например, открытие гравитационных линз, хотя ситуация с тёмной энергией (другое название силы отталкивания) не совсем ясна. В связи с тем, что расширение Вселенной происходит с ускорением, её конечная судьба легко предсказуема: её плотность и абсолютная температура будут стремиться к нулю (напомню, что 0°К = -273°С), и она погибнет. Правда, произойдёт это нескоро.

Вернёмся, однако, к силам гравитации. Благодаря этим силам и другим физическим законам, Вселенная не могла возникнуть из хаоса. Она развивается по объективным законам природы. Известный английский физик Хокинг утверждает, что бог не создавал Вселенную, она возникла благодаря физическим законам, которые управляют Вселенной. Это совпадает с взглядами Эйнштейна и Спинозы, а также с высказыванием Лапласа: «Я в этой гипотезе не нуждаюсь». Сегодня мы знаем, как это всё произошло, хотя есть много явлений, которые требуют дальнейших исследований (как, например, природа тёмной энергии, гравитационные волны или почему Вселенная ускоряется). Причиной взрыва и образования Вселенной являются квантовые эффекты, согласно которым всегда имеется ненулевая вероятность запуска процессов, в итоге сформировавших нашу Вселенную.

В заключение подчеркнём, что в общей теории относительности Эйнштейна, которая является современной релятивистской теорией гравитации, природа гравитации рассматривается как чисто геометрическая, т.е. пространственно-временная, а сама гравитация как проявление свойств пространства-времени. Она связана с кривизной пространства-времени. Искривляется не только пространство, но и время (например, замедление хода часов вблизи чёрных дыр). Сегодня имеются и другие подходы для объяснения природы гравитации. Возможно также, что гравитация является формой материи, а гравитационное поле формой существования материи. Эти и другие проблемы гравитации сегодня интенсивно обсуждаются учёными. Нужны эксперименты с поисками гравитационных волн и гравитонов, т.е. квантов гравитационного поля, которые позволят выяснить природу гравитации, т.е. она пространственно-временная или же является одной из форм материи.

Фундаментальные взаимодействия

От прогулки по улице, до запуска ракеты в космос, или прикрепления магнита на ваш холодильник, физические силы действуют всюду вокруг нас. Но все силы, которые мы переживаем каждый день (и многие из них мы не осознаем) могут быть сведены всего к четырём фундаментальным взаимодействиям:

  • гравитационному;
  • электромагнитному;
  • сильному;
  • слабому.

Они называются четыре фундаментальные силы природы, и они управляют всем, что происходит во всей Вселенной.

Гравитация

Гравитация это притяжение между двумя объектами, которые имеют массу или энергию, это видно, когда бросаешь камень с моста, когда планеты кружат по орбите вокруг звезды или когда Луна становится причиной приливов и отливов на Земле. Гравитация, возможно, самая подсознательно воспринимаемая и знакомая из фундаментальных сил, но она также является самой сложной для объяснения.

Исаак Ньютон был первым, кто предложил идею гравитации, предположительно его на это вдохновило яблоко, которое упало с дерева. Он описал гравитацию как постоянное притяжение между двумя объектами. Спустя века, Альберт Эйнштейн предложил свою теорию общей относительности, согласно которой гравитация это не притяжение, а сила. Массивный объект ведёт себя в пространстве-времени, немного похоже на то, как большой мяч расположенный посреди листа влияет на материю, деформируя её и заставляя другие, меньшие, объекты на листе двигаться к центру.

На этом снимке, полученном космическим телескопом “Хаббл”, показан детальный вид центральной части спиральной галактики без перемычки NGC 772. Авторы и права: NASA / ESA / Hubble / A. Seth et al.

Гравитацией удерживаются вместе планеты, звёзды и даже галактики, она оказывается самой слабой из фундаментальных сил, особенно на молекулярных и атомарных уровнях. Подумай об этом: Насколько тяжело поднять мяч с земли? Или поднять твою ступню? Или прыгнуть? Все эти действия противодействуют гравитации всей Земли. А на молекулярном и атомарном уровнях, гравитация почти не имеет никакого влияния в сравнении с другими фундаментальными силами.

Электромагнетизм

Электромагнитное взаимодействие также называется силой Лоренца и действует между заряжёнными частицами. Противоположные заряды притягивают друг друга, в то время как одинаковые заряды отталкиваются. Чем больше заряд, тем сильнее сила. Точно так же, как и гравитация, эта сила может чувствоваться с бесконечного расстояния (хотя сила будет очень, очень мала на таком расстоянии).

Читать еще:  «САЙГА» ИЗ ТУРЦИИ? KRAL COMPACT УЖЕ В РОССИИ!

Как указывает её название, электромагнитная сила состоит из двух частей электрической силы и магнитной силы. Сначала физики описывали эти силы как отдельные друг от друга, но позже исследователи осознали, что они являются компонентами одной и той же силы.

Электрический компонент действует между заряжёнными частицами двигаются ли они или нет, создавая поле, которым заряды могут влиять друг на друга. Но если их привести в движение эти заряжённые частицы начинают демонстрировать второй компонент, магнитную силу. Частицы создают магнитное поле вокруг них в то время, когда они движутся. Таким образом, когда электроны спешат по проводам, чтобы зарядить ваш компьютер или телефон, или включить ваш телевизор, вокруг провода образуется магнитное поле.

Магнитные поля в спиральной галактике Мессье 77. Магнитные поля выравниваются по всей длине массивных спиральных рукавов галактики, подразумевая, что гравитационные силы, которые создали форму галактики, также сжимают и её магнитное поле. Авторы и права: NASA / SOFIA / JPL-Caltech / Roma Tre University.

Электромагнитные силы передаются между заряжёнными частицами в результате обмена невесомыми, несущими силу бозонами, которые называются фотоны. Несущие силу фотоны, которые меняются местами с заряжёнными частицами, в то же время являются другой формой фотонов.

Электромагнитные силы ответственны за некоторые из самых часто наблюдаемых явлений: трение, упругость, нормальная сила и сила удержания твёрдых тел в заданной форме. Они также ответственны за притяжение, которое испытывают птицы, самолеты и даже Супермен, во время полёта. Это становится возможным благодаря тому, что заряжённые (нейтральные) частицы взаимодействуют друг с другом. Нормальная сила, которая держит книгу на крышке стола, например, является последствием отталкивания электронов атомов стола и электронов атомов книжки.

Сильное взаимодействие

Сильная ядерная сила, также называется сильное ядерное взаимодействие, это самая сильная фундаментальная сила природы. Она в шесть тысяч квинтильонов квинтильонов квинтильонов (это 39 нолей после 6!) раз сильнее чем сила гравитации. И поэтому она в состоянии связать вместе фундаментальные частицы вещества, чтобы сформировать большие частицы. Она держит вместе кварки, которые составляют протоны и нейтроны, и часть сильного взаимодействия также держит вместе протоны и нейтроны атомного ядра.

Сильное взаимодействие работает только тогда, когда субатомные частицы находятся очень близко друг к другу. Они должны быть где-то на расстоянии 10 -15 метров друг от друга, или, грубо говоря, на расстоянии диаметра протона.

Хотя, сильное взаимодействие является нерегулярным, потому что, в отличие от любой другой фундаментальной силы, оно становится слабее, когда между субатомными частицами уменьшается расстояние. Фактически она достигает максимальной силы, когда частицы находятся дальше всего друг от друга. Крошечная частица сильного взаимодействия, называемая остаточным сильным взаимодействием, действует между протонами и нейтронами. Протоны в ядрах отталкивают друг друга потому что они имеют одинаковый заряд, но остаточное сильное взаимодействие может побороть это отталкивание, таким образом частицы остаются связанными в aтомных ядрах.

Слабое взаимодействие

Слабая сила, также называется слабым ядерным взаимодействием, ответственна за распад частиц. Это постоянное изменение одного типа субатомных частиц в другие. Таким образом, например, нейтрино который случайно пройдёт близко возле нейтрона может превратить нейтрон в протон, в то время, как нейтрино станет электроном.

Физики описывают это взаимодействие через обмен несущими силу частицами, которые называют бозонами. Специфические виды бозонов ответственны за слабое, электромагнитное и сильное взаимодействия. В случае слабого взаимодействия, бозоны – это заряжённые частицы, которые называются бозоны W и Z. Когда субатомные частицы такие как протоны, нейтроны и электроны подходят на расстояние 10 -18 метров или 0,1% диаметра протона, один к другому, они могут обменяться своими бозонами.

Наше Солнце – звезда второй популяции возрастом около пяти миллиардов лет. Она включает в себя элементы, которые тяжелее водорода и гелия, а также кислород, углерод, неон и железо. Авторы и права: NASA / Solar Dynamics Observatory.

Слабое взаимодействие критично для реакции ядерного слияния, которая даёт энергию Солнцу и производит энергию, которая требуется для большинства форм жизни здесь на Земле. Именно поэтому археологи могут использовать, радиоактивный углерод, чтобы датировать древние кости, дерево и другие артефакты. Радиоактивный углерод имеет шесть протонов и восемь нейтронов, один из этих нейтронов распадается в протон, чтобы создать радиоактивный азот, который имеет семь протонов и семь нейтронов. Этот распад происходит прогнозируемо, что позволяет учёным определять насколько старым является такой артефакт.

Единая теория фундаментальных взаимодействий

Главный вопрос четырёх фундаментальных взаимодействий заключается в том являются ли они в действительности проявлением единой большой силы Вселенной или нет. Если да, каждая из них должна быть в состоянии объединяться с другими, и уже есть некоторые доказательства.

Физики Шелдон Глашоу и Стивен Вайнберг из Гарвардского университета с Абдусом Салам с Империального колледжа в Лондоне выиграли Нобелевскую премию по физике в 1979 за объединение электромагнитной и слабой сил в результате чего появилась электрослабое взаимодействие. Физики также пытались объединить электрослабую силу с сильным взаимодействием,. Окончательный кусочек пазла будет требовать объединения гравитации с электросильной силой, чтобы развить, так называемую теорию всего, теоретическую систему взглядов, которая могла бы объяснить всю Вселенную.

Физикам довольно сложно совместить микромир с макромиром. На больших и в особенности астрономических шкалах, гравитация доминирует и лучше всего описывается теорией общей относительности Эйнштейна. Но на молекулярных, атомных и субатомных шкалах доминирует квантовая механика. На данный момент никому ещё не удалось найти хороший способ объединить эти два мира.

Физики, изучающие квантовую гравитацию, имеют своей целью описать силу в условиях квантового мира, что могло бы помочь с объединением. Фундаментальным для этого подхода было бы открытие гравитонов, теоретических, несущих силу бозонов гравитационной силы. Гравитация – это единственная фундаментальная сила, которую физики могут сейчас описать, не используя частицы, которые несут силу. Но, потому что описания всех других фундаментальных сил требует частиц, которые несут силу, учёные ожидают, что гравитоны должны существовать на субатомном уровне – исследователи эти частички просто пока не нашли.

Масса галактик в скоплении Abell 2744 составляет менее пяти процентов от общей массы. Газ (около 20 процентов) настолько горячий, что светит только в рентгеновских лучах (выделен красным). Невидимая тёмная материя (около 75 процентов массы) здесь окрашена в синий цвет. Авторы и права: NASA / EKA.

Чтобы ещё больше всё усложнить можно вспомнить о невидимом царстве тёмной материи и тёмной энергии. Неясно состоят ли тёмная материя и энергия из одной частицы или всего набора частиц, которые имеют их собственные силы и носители бозоны.

Первичные носители-частицы, которые представляют интерес – это теоретический тёмный фотон, который передавал бы взаимодействия между видимой и невидимой материей. Если тёмные фотоны существуют, они могли бы привести к открытию пятой фундаментальной силы. Пока, однако, нет доказательств того, что тёмные фотоны существуют и некоторые исследования предоставили сильные доказательства, что эти частички не существуют.

Топ-10: самые интересные факты и теории о гравитации

О понятии гравитации мы впервые узнаем еще в школе. Там нам обычно рассказывают о том, что существует такая удивительная сила, которая удерживает всех на Земле, и только благодаря ей мы не улетаем в открытый космос и не ходим вниз головой. На этом веселье практически и заканчивается, ведь в школе нам рассказывают только самые основные и простые вещи. В реальности по поводу всемирного притяжения ведется очень много споров, ученые предлагают новые теории и идеи, и существует намного больше нюансов, чем вы только можете себе представить. В этой подборке вас ждет несколько ну очень интересных фактов и теорий про гравитационное воздействие, которые либо не вошли в школьную программу, либо известны они стали не так давно.

10. Гравитация – это теория, а не доказанный закон

Фото: NASA/JPL

Существует миф, что гравитация — это закон. Если вы попробуете провести онлайн-исследование на эту тему, любой поисковик предложит вам множество ссылок про Закон всемирного тяготения Ньютона. Однако в научной среде законы и теории – это абсолютно разные понятия. Научный закон – это неопровержимый факт, основанный на подтвержденных данных, который четко объясняет суть происходящих явлений. Теория в свою очередь – это своего рода идея, с помощью которой исследователи пробуют объяснить определенные феномены.

Если описывать гравитационное взаимодействие посредством научных терминов, относительно грамотному человеку сразу же становится совершенно ясным, почему всемирное тяготение рассматривается в теоретической плоскости, а не как закон. Поскольку у ученых все еще нет возможности изучить гравитационные силы каждой планеты, спутника, звезды, астероида и атома во Вселенной, мы не имеем никакого права признавать всемирное тяготение законом.

Автоматический зонд Вояджер-1 (Voyager 1) совершил путешествие длиной в 21 миллиард километров, но, оказавшись даже на таком далеком расстоянии от Земли, он едва покинул нашу планетную систему. Полет длился 40 лет и 4 месяца, и за все это время исследователи получили не так уж много данных, чтобы перевести размышления о гравитации из теоретической области в разряд законов. Наша Вселенная слишком велика, и мы пока что знаем слишком мало…

9. В теории о гравитации много пробелов

Мы уже выяснили, что всемирное тяготение – это всего лишь теоретическая концепция. Более того, в этой теории, оказывается, есть еще немало пробелов, которые явно указывают на ее относительную неполноценность. Многие несостыковки были отмечены не просто в пределах нашей Солнечной системы, но даже здесь, на Земле.

Например, согласно теории всемирного тяготения на Луне гравитационная сила Солнца должна ощущаться намного сильнее, чем притяжение Земли. Выходит, что Луна должна вращаться вокруг Солнца, а не вокруг нашей планеты. Но мы то знаем, что Луна – именно наш спутник, и для этого иногда достаточно просто поднять глаза в ночное небо.

Читать еще:  Как увеличить мощность пневматического пистолета: апгрейды, замена деталей, меры безопасности

В школе нам рассказывали про Исаака Ньютона, которому на голову упало судьбоносное яблоко, вдохновившее его на идею о теории всемирного тяготения. Даже сам Ньютон признавал, что у его теории есть определенные недостатки. В свое время именно Ньютон стал автором нового математического понятия – флюксий (производных), которое и помогло ему в формировании той самой теории тяготения. Флюксии могут прозвучать для вас не так уж и знакомо, но в итоге они плотно вошли в мир точных наук.

Сегодня в математическом анализе часто используется способ дифференциального исчисления, основанный как раз на идеях Ньютона и его коллеги Лейбница. Впрочем, этот раздел математики тоже довольно неполноценен и не лишен своих изъянов.

8. Гравитационные волны

Общая теория относительности Альберта Эйнштейна была предложена в 1915 году. Примерно в это же время появилась и гипотеза о гравитационных волнах. Вплоть до 1974 года существование этих волн оставалось сугубо теоретическим.

Гравитационные волны можно сравнить с рябью на полотне пространственно-временного континуума, которая появляется вследствие масштабных событий во Вселенной. Такими событиями могут быть столкновение черных дыр, перемены в скорости вращения нейтронной звезды или вспышки сверхновой. Когда происходит нечто подобное, гравитационные волны распространяются по пространственно-временному континууму, как рябь по воде от упавшего в нее камня. Эти волны путешествуют по Вселенной со скоростью света. Катастрофические события мы наблюдаем не так часто, поэтому на выявление гравитационных волн у нас уходит много лет. Вот почему на доказательство их существования ученым понадобилось больше 60 лет.

Почти 40 лет ученые изучали первые свидетельства существования гравитационных волн. Как оказалось, эта рябь возникает в процессе слияния двойной системы очень плотных и тяжелых гравитационно связанных звезд, вращающихся вокруг общего центра масс. Со временем компоненты двойной звезды сближаются, и их скорость постепенно снижается, как и было предсказано Эйнштейном в его теории. Величина гравитационных волн настолько невелика, что в 2017 году за их экспериментальное обнаружение даже вручили Нобелевскую премию по физике.

7. Черные дыры и гравитация

Черные дыры – одна из самых больших загадок во Вселенной. Они появляются во время гравитационного коллапса достаточно крупной звезды, которая становится сверхновой. Когда происходит вспышка сверхновой, в космическое пространство выбрасывается значительная масса звездного вещества. Происходящее может спровоцировать в космосе формирование пространственно-временной области, в которой гравитационное поле становится настолько сильным, что даже кванты света не в состоянии покинуть это место (эту черную дыру). Черные дыры образует не гравитация как таковая, но она все же играет ключевую роль в наблюдении и изучении этих областей.

Именно гравитация черных дыр и помогает ученым обнаруживать их во Вселенной. Поскольку гравитационное притяжение бывает невероятно мощным, исследователи иногда могут отмечать его влияние на другие звезды или на газы, окружающие эти области. Когда черная дыра затягивает газы, образуется так называемый аккреционный диск, в котором вещество разгоняется до таких высоких скоростей, что от нагрева оно начинает производить сильнейшее излучение. Это свечение можно зафиксировать и в рентгеновском диапазоне. Именно благодаря аккреционному явлению мы и смогли доказать существование черных дыр (с помощью специальных телескопов). Выходит, что если бы не гравитация, мы бы и не знали о существовании черных дыр.

6. Теория о черной материи и черной энергии

Фото: NASA

Примерно 68% Вселенной состоит из темной энергии, а 27% отводятся для темной материи. Теоретически. Несмотря на то, что в нашем мире темной материи и темной энергии выделили так много пространства, знаем мы о них ну очень мало.

Нам предположительно известно, что темная энергия обладает целым рядом свойств. Например, руководствуясь все той же теорией гравитации Эйнштейна, ученые предположили, что темная энергия постоянно расширяется. Кстати, изначально ученые полагали, что теория Эйнштейна поможет им доказать, что со временем гравитационное воздействие замедляет расширение Вселенной. Однако в 1998 году данные, полученные космическим телескопом Хаббл (Hubble), дали основание полагать, что Вселенная расширяется только с нарастающей скоростью. Тогда же ученые и пришли к выводу, что теория гравитации не способна объяснить фундаментальные явления, происходящие в нашей Вселенной. Так и появилась гипотеза о существовании темной энергии и темной материи, призванная обосновать ускорение расширения Вселенной.

5. Гравитоны

Фото: pbs.org

В школе нам говорят, что гравитация – это сила. Но это может и нечто большее… Не исключено, что гравитацию в будущем будут рассматривать как проявление частицы под названием гравитон.

Гипотетически гравитоны – это безмассовые элементарные частицы, которые испускают гравитационное поле. На сегодняшний день физики пока что не доказали существование этих частиц, но у них есть уже немало теорий о том, почему эти гравитоны непременно должны существовать. Одна из таких теорий гласит, что гравитация – единственная сила (из 4 фундаментальных сил природы или взаимодействий), которую пока что не связали ни с одной элементарной частицей или какой-либо структурной единицей.

Возможно, гравитоны существуют, но распознать их невероятно сложно. Физики предполагают, что гравитационные волны состоят как раз из этих неуловимых частиц. Чтобы выявить гравитационные волны, исследователи провели немало экспериментов, в одном из которых они использовали зеркала и лазеры. Интерферометрический детектор помогает зафиксировать смещения зеркал даже на самые микроскопические расстояния, но, к несчастью, это не позволяет выявить изменения, связанные со столь крошечными частицами, как гравитоны. В теории для подобного эксперимента ученым пригодились бы настолько тяжелые зеркала, что при их обрушении могли бы возникнуть черные дыры.

В общем, в ближайшем будущем обнаружить или доказать существование гравитонов возможным не представляется. Пока что физики наблюдают за Вселенной и надеются, что именно там они найдут ответы на свои вопросы и смогут обнаружить проявления гравитонов где-то вне наземных лабораторий.

4. Теория возникновения червоточин

Фото: space.com

Червоточины, кротовины или кротовые норы – это еще одна великая загадка Вселенной. Было бы круто попасть в некий космический туннель и совершить путешествие со скоростью света, чтобы добраться до другой галактики в кратчайшие сроки. Эти фантазии уже не раз использовались в фантастических триллерах. Если во Вселенной, действительно, существуют червоточины, такие прыжки могут оказаться вполне возможными. На данный момент у ученых нет никаких доказательств существования кротовых нор, но некоторые физики считают, что эти гипотетические туннели можно создавать с помощью манипуляций с гравитацией.

Общая теория относительности Эйнштейна допускает возможность будоражащих воображение кротовин. Принимая во внимание труды легендарного ученого, другой физик, Людвиг Фламм (Ludwig Flamm), попытался описать, как сила притяжения могла бы исказить временное пространство таким образом, чтобы в нем произошло формирование нового туннеля, мостика между одной областью ткани физической действительности и другой. Конечно же, существуют и другие теории.

3. Планеты тоже оказывают на Солнце гравитационное влияние

Мы уже знаем, что гравитационное поле Солнца влияет на все объекты нашей планетной системы, и именно поэтому все они вращаются вокруг нашей единственной звезды. По такому же принципу и Земля связана с Луной, и именно поэтому Луна вращается вокруг нашей родной планеты.

Однако каждая планета и любое другое небесное тело с достаточной массой в нашей Солнечной системе тоже обладают своими гравитационными полями, которые влияют на Солнце, остальные планеты и все прочие космические объекты. Величина оказываемой силы притяжения зависит от массы объекта и расстояния между небесными телами.

В нашей солнечной системе именно благодаря гравитационному взаимодействию все объекты вращаются по своим заданным орбитам. Самое сильное гравитационное притяжение, конечно же, у Солнца. По большому счету все небесные тела с достаточной массой обладают своим гравитационным полем и оказывают влияние на другие объекты со значительной массой, даже если те находятся на расстоянии нескольких световых лет.

2. Микрогравитация

Фото: NASA

Все мы не раз видели фотографии космонавтов, парящих по орбитальным станциям или даже выходящих за пределы кораблей в специальных защитных скафандрах. Вы наверняка привыкли считать, что эти ученые обычно кувыркаются в пространстве, не ощущая никакого притяжения, потому что его же там и нет. И будете очень неправы, если так. В космосе тоже есть притяжение. Называть его принято микрогравитацией, ведь оно почти не ощутимо. Именно благодаря микрогравитации космонавты чувствуют себя легкими, как пушинка, и так свободно парят в пространстве. Если бы гравитации не было вовсе, планеты бы попросту не вращались вокруг Солнца, а Луна давно бы покинула Земную орбиту.

Чем дальше объект от центра притяжения, тем сила гравитации слабее. На МКС действует именно микрогравитация, ведь там все объекты находятся намного дальше от гравитационного поля Земли, чем хотя бы и вы прямо здесь сейчас. Гравитация слабеет и на других уровнях. Например, возьмем один отдельный атом. Это настолько крошечная частица вещества, что в ее случае тоже действует довольно скромная гравитационная сила. По мере объединения атомов в группы, эта сила, конечно, растет.

1. Путешествия во времени

Идея путешествий во времени очаровывает человечество уже довольно давно. Многие теории, включая и теорию гравитации, дают надежду полагать, что такие путешествия на самом деле однажды станут возможными. Согласно одной из концепций, гравитация формирует в пространственно-временном континууме некий изгиб, который и заставляет все объекты во Вселенной двигаться по искривленной траектории. В результате в космосе объекты двигаются немного быстрее в сравнении с объектами, находящимися на Земле. Если точнее, то вот вам пример – часы на космических спутниках каждый день опережают ваши домашние будильники на 38 микорсекунд (0.000038 секунды).

Поскольку из-за гравитации в космосе объекты двигаются быстрее, чем на Земле, космонавтов фактически можно признать заодно и путешественниками во времени. Впрочем, путешествие это настолько незначительное, что по возвращении домой ни сами космонавты, ни их близкие не замечают никакой принципиальной разницы. Но это не отменяет одного очень интересного вопроса – возможно ли использовать гравитационное воздействие для путешествий во времени, как это показывают в фантастических кинолентах?

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector